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Abstract
The uncertainties in sea ice extent (total area covered by sea icewith concentration>15%) derived
frompassivemicrowave sensors are assessed in twoways. Absolute uncertainty (accuracy) is evaluated
based on the comparison of the extent between several products. There are clear biases between the
extent from the different products that are of the order of 500 000 to 1×106 km2 depending on the
season and hemisphere. These biases are due to differences in the algorithm sensitivity to ice edge
conditions and the spatial resolution of different sensors. Relative uncertainty is assessed by examining
extents from theNational Snow and IceDataCenter Sea Ice Index product. The largest source of
uncertainty,∼100 000 km2, is between near-real-time andfinal products due to different input source
data and different processing and quality control. For consistent processing, the uncertainty is assessed
using different input source data and by varying concentration algorithmparameters. This yields a
relative uncertainty of 30 000–70 000 km2. TheArcticminimumextent uncertainty is∼40 000 km2.
Uncertainties in comparingwith earlier parts of the recordmay be higher due to sensor transitions.
For the first time, this study provides a quantitative estimate of sea ice extent uncertainty.

1. Introduction

Sea ice extent is a widely used polar climate indicator and
the significant decreasing trend in Arctic summer sea ice
extent over the past forty years is one of the most iconic
indicators of climate change. Sea ice extent is defined as
the total surface area covered by sea ice above a certain
concentration threshold (usually 15%). It has most
commonly been derived from passive microwave ima-
gery. The advantage of passive microwave data is that
they provide all-sky (including darkness and cloudy
conditions) capability; that and the sensor properties (i.e.
a wide swath) allow complete daily coverage. In addition,
a consistent series of sensors since the end of 1978 have
now provided a nearly-complete high-quality 40-year
recordof sea ice extent.

Passive microwave brightness temperature data
are used to derive sea ice concentration (fractional ice
cover) based on empirically derived algorithms, typi-
cally as gridded daily average fields. The extent is
then computed by summing the area of all grid cells
with a concentration above the defined threshold.

Several different algorithms and products have been
developed based on the passive microwave record. Over
the years there have been numerous validation studies
conducted to estimate theuncertainties of the concentra-
tionfields (e.g. Ivanova et al 2015) aswell as ice edge posi-
tion (e.g. Partington 2000). These have been based on
comparison with higher spatial resolution visible, infra-
red, or synthetic-aperture radar data on satellite, air-
borne, and occasionally ship-borne platforms. However,
these studies have been conducted on a limited set of
validationdata, usually over small regions and a relatively
short periodof time. Trends fromsea ice extent fromdif-
ferent products have been intercompared (e.g. Comiso
et al 2017). However, to date there has not been an
attempt to quantify the uncertainty in daily or monthly
total sea ice extent estimates from passive microwave
instruments.

Here we assess extent uncertainty in two ways.
First, we compare several extent products and deter-
mine the range of the estimates. This provides an indi-
cation of the absolute uncertainty (accuracy) of the
extent; in other words, it provides a range of how
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much total sea ice there is. Second, we estimate the
relative uncertainty (precision) of one extent product,
the National Snow and Ice Data Center (NSIDC) Sea
Ice Index (SII; Fetterer et al 2017), to determine the
consistency of the estimates over time; this yields the
uncertainty of any given estimate (e.g. for a day or a
month) relative to other times from the same product.

2. Background

This study uses the multichannel passive microwave
satellite record, which spans from late 1978 through to
the present. Further information on the instruments is
provided in the supplementary materials available
online at stacks.iop.org/ERL/14/035005/mmedia;
here we simply list (table 1) the primary sensors and
platforms discussed in this paper. The sensors retrieve
the parameter ‘brightness temperature’, Tb, which is
an indication of the emitted energy by a surface. For a
given surface with a given physical temperature, Tb

values varywith frequency and polarization.
Several algorithms have been developed to derive

sea ice concentration (fractional coverage of ice) from
Tb via empirically derived algorithms. The different
algorithms use different combinations of frequency
and polarization channels, but generally share the
common approach of finding coefficients (called ‘tie-
points’) for pure surface types (100% ice, 100% water)
and interpolating between these to find the concentra-
tion that corresponds to a set of Tb values. Post-
processing is typically conducted to remove spurious
sea ice retrievals due to weather and coastal effects
(mixed land/ocean grid cells) and to fill in missing
data with spatial and/or temporal interpolation. More
details on concentration algorithms and associated
references are provided in the supplementary
material.

In this study, we employ the commonly used 15%
concentration threshold to define the edge. The origi-
nal rationale for this threshold comes from early vali-
dation studies that found the 15% concentration
contour agreed best with the ‘true’ ice edge in high-
resolution airborne or satellite data (e.g. Cavalieri et al
1991). Due to satellite orbit characteristics, the passive

microwave instruments have a gap (‘pole hole’) in cov-
erage near the pole; the size of the gap has varied
between different sensors. The gap for all sensors is
assumed to be ice-covered (>15%) and the pole hole
area is included in the extent total.

Another practical reason for the 15% threshold is
that most algorithms apply a post-processing ‘weather
filter’ to remove erroneous ice due to emission from
the atmospheric and wind roughening of the ocean
surface. This filter is generally a ‘gradient ratio’ (GR)—
a normalized difference between two frequencies. For
sea ice, twoGRs are commonly used: Tbs from the ver-
tical polarizations of (1) 37 GHz and 19 GHz and (2)
22 GHz and 19 GHz frequencies. The relevance for the
ice edge is that while the goal is to remove weather arti-
facts, in practice it removes some low-concentration
ice. Using the 15% threshold avoids having the GR fil-
ter affect the extent estimates. The GR filter and its
influence on extent are examined in more detail in
section 4.

Subsequent comparisons (e.g. Partington 2000)
have found that the representativeness of the 15%
contour to define the ice edge can vary considerably
depending on the character of the ice near the edge.
The sea ice edge is not necessarily a sharp boundary,
rather it is often amélange of ice floes of varying thick-
ness and sizes intermixed with open water. The sensi-
tivity of passive microwave imagery to such thin ice
and small floes is variable. The concentration retrieved
may fall below the 15% threshold even when sub-
stantial (>15%) ice remains, depending on the aggre-
gate effect of the concentration, size of floes, presence
of melt ponds, and ice thickness of the observed
region.

The ice edge determination, and hence an extent
estimate, are also dependent to some degree on the
spatial resolution of the sensor and, because resolution
varies with frequency, the frequencies used by a given
algorithm. Lower resolution may lead to a ‘smearing
out’ of the ice edge, leading to an overestimate of the
edge. On the other hand, the smearing may compen-
sate for the limited performance in thin and melting
ice, which is most prevalent near the ice edge. This has
important ramifications when interpreting differences
in extents fromdifferent sea ice products.

Table 1.Passivemicrowave sensors and satellites used for long-term records of sea ice concentration and extent, as of August 2018.

Sensor Satellite(s)
Years of operation for sea ice

products

Scanningmultichannelmicrowave radio-

meter (SMMR)
NASANimbus-7 Oct 1978–Aug 1987

Special sensormicrowave imager (SSMI) DMSPF8, F11, F13 Jul 1987–Dec 2007

Special sensormicrowave imager and sounder

(SSMIS)
DMSPF16, F17, F18 Jan 2007–present

Advancedmicrowave scanning radiometer for

EOS (AMSR-E)
NASAEarthObserving System (EOS)Aqua May 2002–Oct 2011

Advancedmicrowave scanning radiometer 2

(AMSR2)
JAXAGlobal ChangeObservationMission for

Water (GCOM-W)
Jul 2012–present
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Here we evaluate extent uncertainty in twoways: (1)
absolute uncertainty via comparison of extents from
several different products, and (2) relative uncertainty by
comparing extent variability with different inputs and
processing. The primary extent estimates are from the
NSIDC SII version 3 (Fetterer et al 2017, http://nsidc.
org/data/seaice_index/). The SII extents are derived
from two sources of gridded sea ice concentration fields.
For recent data, near-real-time (NRT) sea ice concentra-
tions from the NASA team algorithm (Maslanik and
Stroeve 1999), processed at NSIDC, are employed. The
NRT fields are replaced by ‘final’ concentration fields
when data are processed by NASA Goddard (also using
theNASA teamalgorithm) (Cavalieri et al 1996).

3. Absolute uncertainty

Themost basic questions concerning sea ice extent are
just how much of the ocean surface is covered by ice
and how well can we measure it? In other words, what
is the accuracy, or absolute uncertainty, of the
estimates compared to the ‘true’ extent? While con-
ceptually straightforward, determining the accuracy of
sea ice extent estimates is difficult because there is no
polar-wide, independent, accurate, and consistent
data product with which to compare the passive
microwave estimates. Here we calculate a range of
extents based on the different products to represent an
estimate of absolute uncertainty.

3.1. Approach
The approach we use is to simply look at an ensemble
of estimates from different products. We assume that
no passive microwave product is perfect and no
estimate will be ‘correct’. However, by comparing
extent estimates of several different products, we can
use the variation between the estimates to provide a
range of extent values into which the true extent is
likely to fall. Of course, this is not necessarily the case:
all of the estimates may be biased high or low. But the
ensemble of extent values at least provides a reasonable
range of possible extent values.

As noted above, there are several sea ice extent pro-
ducts published, either as graphical time series and/or
provided as text data. The different products used here
are shown in table 2.

We note that this exercise is not an algorithm
inter-comparison, which has been done by others (e.g.
Ivanova et al 2015). The purpose here is to inter-com-
pare the published extent estimates as the data provi-
ders have processed them. So, we use the products as-
is and do not control for differences in processing or
input data. Thus, some differences in the extent values
are likely due to non-algorithmic choices (e.g. land
mask, projection, etc.) made by the providers. How-
ever, such differences are relatively small compared to
the extent and should be consistent throughout the
time series.

In assessing the differences, we use the NSIDC SII
estimates as the baseline. This is for consistency with
the next section on relative uncertainty. It does not
suggest that these are more or less correct than others,
but simply to provide a consistent measure for com-
parison of the different products.

3.2. Results
The products are compared over a three-year period,
from 2015–2017. This period was chosen to coincide
with the next section on relative uncertainty. Though
relatively short, this is long enough to clearly show the
differences between the products at different times of
the year. It shows a general consistency in the
differences through the years (for a given season).
Comparisons have been conducted on products over a
longer period to compare long-term trends (e.g.
Comiso et al 2017), but that is not the goal of this
study.

The extent estimates from the product all clearly
track the seasonal variability of the ice cover, from a
maximum in winter through the summer minimum
(figure 1). However, there are clear differences in the
estimates from the products and these differences vary
seasonally (figure 2). These relate to two primary
aspects of the products. First is the sensitivity of the
algorithms to emission by different ice conditions,
most notably thin ice and surface melt. Surface melt
generally reduces concentration (the algorithm inter-
prets the liquid water as open water) and thin ice is
underestimated because of emission from the water
beneath the ice (Steffen et al 1992). Second, as noted
above, the spatial resolution is a key factor in the esti-
mate of extent. Higher resolution products, such as
those fromAMSR2willmore precisely detect the edge,
other factors being equal.

One outlier in the extents is the Ocean and Sea Ice
Satellite Application Facility (OSISAF) values in the
Arctic, which are as much as 1.5×106 km2 above the
SII estimates during summer, while other estimates
vary within ∼500 000 km2. The reason for this is that
the OSISAF version 1 concentration fields do not
employ GR weather filters, but instead use atmo-
spheric corrections based on numerical weather
model output (Tonboe et al 2016). These corrections
remove some weather effects, but some remain, evi-
dent as low-concentration (slightly>15%) ice inwater
regions off the ice edge. These concentrations con-
tribute to the extent, biasing the OSISAF values higher
than other products. We note that a soon-to-be-
released version 2 of the OSISAF product (Lavergne
et al 2019) will include a concentration field with GR
filters applied.

Of particular interest are the annual maximum
and minimum extent values, especially the Arctic
minimum. The focus on the Arctic minimum is due to
the significant long-term downward trend observed
over the record (since 1979) and the record low
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Table 2.Products used in extent absolute uncertainty comparison. Note thatMultisensor Analyzed Sea Ice Extent (MASIE) is not a passivemicrowave; see the supplement for further details onMASIE.

Product Sensor Concentration algorithm Gridded res. (km) Data provider Source/reference

Sea Ice Index (SII) F17&F18 SSMIS NASA team 25 NSIDC Fetterer et al 2017 (http://nsidc.org/data/seaice_index/)
Goddard Bootstrap F17 SSMIS Bootstrap 25 NASAGoddard, NSIDC Comiso et al 2017 (http://nsidc.org/data/nsidc-0079) (extent values provided by R. Gersten, NASA

Goddard)
Bremen AMSR2 ASI 6.25 Univ. Bremen Spreen et al 2008 (https://seaice.uni-bremen.de/sea-ice-concentration/)
JAXA AMSR2 Bootstrap 10 JAXA (https://ads.nipr.ac.jp/vishop/#/extent)
OSISAF SSMIS Bristol/Bootstrap 25 EUMETSAT EUMETSAT SAF onOcean and Sea Ice 2015, 2016 (http://osisaf.met.no/p/ice/index.html#conc-

reproc-v2) (extent values provided byT Lavergne, NorwegianMeteorol. Inst.)
MASIE Multiple Manual interpretation 1 U.S. Nat’l Ice Center,

NSIDC

National IceCenter andNational Snow and IceDataCenter 2010 (http://nsidc.org/data/masie/)
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minimum extents in 2007 and 2012. It also defines the
extent of the multi-year (perennial) sea ice cover.
Reduced summer sea ice cover is also of great interest
to stakeholders in the region. Theminimum andmax-
imum extent show fairly consistent behavior between
the products (tables 3 and 4). The Japan Aerospace
Exploration Agency (JAXA) is consistently lowest,
while OSISAF is highest or second highest (due in part
to the weather effects). The SII values are generally
close to the middle range of the products. The spread
of the extents is nearly one million square kilometers.
Roughly half of the spread in the minimum is due
solely to the OSISAF product. In winter, both OSISAF
and MASIE are higher than the others. The low JAXA
values are likely due to the higher spatial resolution,
resulting in less ‘smearing’ of the ice edge; however,
this doesn’t necessarily mean that JAXA is more accu-
rate—it may miss thin or melting ice and under-
estimate the ice edge location.

In the Antarctic (table 4), the range in extents is
smaller, perhaps due to the fact that OSISAF and
MASIE values are not available for the Antarctic. The
minimum extent spread is smaller, ∼250 000 km2,
than in winter (∼450 000 km2) perhaps simply due to
less total ice overall. The larger extent range in winter
may be due to the same phenomena—larger extent
allows formore variability. There is also a less clear-cut
difference between the products with the highest and
lowest values varying between maximum and mini-
mum and even the years. The time series of the differ-
ence with SII shows interesting features as well
(figure 2(b)). The Bootstrap is consistently higher than

SII. Bremen and JAXA differences with SII are closer
to zero in general, but Bremen has a noticeable drop in
the November to February period. This is during aus-
tral spring and summer when ice extent is decreasing
rapidly. The Bremen product appears to be affected by
surface properties (melt) or atmospheric emission
(due to the use of the 85–90 GHz channels), which
reduce detection of ice relative to the other products.

While the spread of estimates seems large, it
reflects a surprisingly small change in ice edge position
due to the large perimeter of the ice cover. As demon-
strated conceptually in the supplementary materials, a
1×106 km2 extent difference reflects a change in ice
edge position of only ∼25–75 km (one to three grid
cells) depending on the latitude of the ice edge. Also
recall that some of the differences, especially those
with different gridded resolutions, can be attributed to
differences in landmasks.

4. Relative uncertainty

While absolute uncertainty is important and is of
particular interest to stakeholders operating in the
Arctic, in reality the passive microwave data’s resolu-
tion is too coarse and has too many limitations (thin
ice, surface melt) near the ice edge to be very useful to
operational users (e.g. Dedrick et al 2001). The
primary value of the passive microwave sea ice record
is in the long-term tracking of climate trends and
variability. For this, the key information is not exactly
how much ice there is, but how consistent it is over
time. Regardless of the absolute amount of ice, if there

Figure 1.Arctic andAntarctic sea ice extent, 2015–2017, fromdifferent products.
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is consistency over time then trends and anomalies will
be accurate. In other words, it is the relative uncer-
tainty, or precision, that is of most interest for climate
monitoring.

Unfortunately, there is no direct way to do this
because we have no consistent standard to measure
against. Operational ice analyses (such as MASIE, see
supplement) would be a possibility, but because they
are based on varying data quantity and quality and
include subjective assessment by expert ice analysts,
they are not a consistent source (Meier et al 2015).

4.1. Approach
The approach here is to investigate the sensitivity of
the extent to variations in the processing: (1) NRT
versus final processing, (2) different Tb sources, and
(3) the GR open water threshold. We use the SII
processing scheme as the basis for this assessment. All
extents are based on 5-day running averages of daily
values, as is done for the published SII values. This
smooths out day-to-day variability and yields a more
consistent time series. The different inputs are
described below and summarized in table 5.

Figure 2.Extent differences between algorithmproducts and the SII product for (a)Arctic and (b)Antarctic, 2015–2017.

6

Environ. Res. Lett. 14 (2019) 035005



1.NRT versus final: NSIDC archives two concentra-
tion products. The first is an NRT product
(Maslanik and Stroeve 1999) processed at NSIDC
that uses NRT Tbs from NOAA CLASS (http://
class.noaa.gov/). The second is a final product
processed at NASAGoddard (Cavalieri et al 1996)
that uses Tbs fromRemote Sensing Systems (RSS),
Inc. (version 7, Wentz et al 2013; http://remss.
com/missions/ssmi/). The different Tb calibra-
tion by CLASS and RSS contributes to differences
in concentration. In addition, while the concen-
tration algorithm is the same for both the NRT
and Goddard product, there are differences in
ancillary processing. Goddard fills data gaps with
spatial and temporal interpolation and it uses a
different ocean mask to filter out false ice
retrievals in regions where sea ice never occurs.
Finally, it does manual quality control editing to
remove clearly spurious ice. The SII extents are
derived from the NRT concentrations for recent
data, which are replaced with Goddard final data
when they become available.

2. Tb source: Currently there are three operating
SSMIS sensors, on the Defense Meteorological
Satellite Program (DMSP) F16, F17, and F18
satellites, all of which have had overlapping
operation for the past several years. Though the
instruments are the same design, there will be
small differences in Tb values due to sensor

instrumentation and calibration, as well as obser-
vation time. NSIDC has begun processing con-
centrations from all three sensors internally,
though only one sensor (currently F18) is dis-
tributed publicly. Also, as noted above, while
NSIDC uses CLASS Tbs for its NRT processing,
RSS also provides Tbs (albeit not inNRT).

3.Weather filter: as noted above, two weather filters
are used to automatically remove erroneous ice
over open water due to weather effects and these
filters potentially affect extent by removing low-
concentration ice (potentially including concen-
trations biased low by melt). The GR2219 was
found to only have a small effect on the ice edge
(Meier and Ivanoff 2017), so here we investigate
only the sensitivity of extent to GR3719. Extent
changes due to GR3719 represent sensitivity to
both random noise in the Tb values and the ice
conditions near the ice edge. The algorithm
tiepoints for pure surface type could also be
adjusted, which will affect concentration and thus
extent, but the weather filter threshold is a more
direct and more easily controlled way to test the
sensitivity of extent to algorithmparameters.

With the exception of the F17 Goddard final pro-
duct, all of the test cases above were processed at
NSIDC using the same NSIDC processing system that
is used for the operational NRT products. We note
that the same tiepoints are used for all NSIDC-pro-
cessed cases, based on the F17 tiepoint values calcu-
lated for the NRT CLASS Tb data (Meier et al 2011).
Goddard uses different F17 tiepoints, derived based on
the RSS Tb data (Cavalieri et al 2012). The Goddard
product also made a slight adjustment to the GR3719
weather filter threshold for the Antarctic, from
0.05–0.053.

On 5 April 2016, the F17 SSMIS data started show-
ing spurious behavior due to satellite issues that affec-
ted the 37H channel. The channel began operating
nominally again on 10May 2016. This period has been
removed from the analysis, as well as a 5-day period in
December 2016. One- or two-day periods with miss-
ing or bad data occasionally occurred in at least one
source; extent values for these days were interpolated
from the extents from surrounding days. Details on
the missing values are provided in the supplement.
The seasonal cycle of all cases is shown for 2015–2017
infigure 3.

4.2. Results
The relative uncertainty is estimated by comparing
extents from the variant cases with the standard
baseline case, which is used as the source for the NRT
SII extent estimates. While NSIDC now uses F18
CLASS data for NRT, here we use the F17 CLASS with
a 0.05 GR threshold as the baseline. This was selected
because (1) it is still (through 2018) used for the

Table 3.Daily (5-day trailing average)minimumandmaximum
Arctic sea ice extent fromdifferent products, 2015–2017. Units are
106 km2. The highest values are highlighted in bold and the lowest
values are highlighted in bold-italic.

Minimum Maximum

Product 2015 2016 2017 2015 2016 2017

SII 4.43 4.17 4.67 14.52 14.51 14.41

Goddard 4.85 4.54 4.91 14.64 14.66 14.46

Bremen 4.39 4.06 4.72 14.64 14.50 14.46

JAXA 4.31 4.03 4.49 13.92 13.92 13.85

OSISAF 5.29 5.01 5.41 14.85 14.98 14.80

MASIE 4.53 4.30 4.66 14.85 15.04 14.75

Median 4.48 4.24 4.70 14.64 14.59 14.46

Range 0.98 0.98 0.92 0.93 1.12 0.95

Table 4.Daily (5-day trailing average)minimumandmaximum
Antarctic sea ice extent fromdifferent products, 2015–2017. Units
are 106 km2. The highest values are highlighted in bold and the
lowest values are highlighted in bold-italic.

Minimum Maximum

Product 2015 2016 2017 2015 2016 2017

SII 3.59 2.63 2.11 18.86 18.53 18.10

Goddard 3.86 2.88 2.27 19.18 18.87 18.43

Bremen 3.69 2.75 2.34 18.88 18.60 18.20

JAXA 3.61 2.69 2.15 18.70 18.45 17.99

Median 3.65 2.72 2.21 18.87 18.57 18.15

Range 0.27 0.25 0.23 0.48 0.42 0.44
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Goddard product, (2) it was the near-time-standard
for several years until the satellite issues in April 2016,
(3) RSS has not yet provided F18 SSMIS data, and
(4)NSIDC has not distributed F16 data publicly. So, it
is the one configuration that can be compared
consistently across all other cases.

The first uncertainty is simply in howmuch extent
changes when the NRT concentration source is
replaced by the final Goddard concentration fields.
A notable feature in the Goddard differences
(figure 4(a)) are small sudden jumps that occur at
month transitions (e.g. April to May 2015 and August
to September 2015). This occurs due to the difference
in ocean masks used in the Arctic to filter residual
weather effects far from the ice edge where sea ice is
not possible. Goddard uses a sea surface temperature-
based monthly climatology (Cavalieri et al 1996).
NSIDC found that this climatology was too con-
servative and allowed too much false ice in the NRT
product, particularly during summer with the much
lower than average extents in recent years. Goddard
does manual corrections to remove such false ice, so
the conservative climatology is not a problem for
clearing out weather effects—they are removedmanu-
ally. However, much of the false ice occurs along the
coast due to mixed ocean–land sensor footprints. As
noted in the supplement, a filter removes some of this
effect, but not all of it. The ocean masks are monthly
fields and a change in month marks a transition to a
new ocean mask. So, the differences in the ocean
masks result in a different amount of coastal ice being
removed in a given month, which causes the sudden,
small jumps in the Goddard extent difference. This is
shown in figure 5, where coastal ice in the Sea of
Okhotsk and weather effects off southern Greenland
are evident in the NRT extent field on 31 August, but
not on 1 September.

While the bias between the Goddard and the NRT
daily (5-day running average) values is overall fairly
small (table 6), it varies by month and during Septem-
ber in the Arctic it is ∼41 000 km2. This is largely due
to coastal ice from land spillover, as seen in figure 5.
There is also variability (standard deviation) in the
daily extent values (table 7), which adds further to the
uncertainty. Taken together, the uncertainty in NRT

extents relative to the Goddard final values is
∼100 000 km2 using a two standard deviation range
for uncertainty. Note that this uncertainty only exists
for the time whenNRT values are used. Once the NRT
values are replaced byfinal values fromGoddard (6–12
months later), this uncertainty disappears.

In looking at the sensitivity to Tb, the first notice-
able feature is a clear bias in the extents using RSS Tbs
(figure 4). This is not surprising because, as noted
above, the NSIDC processing uses the same tiepoints,
derived for the F17 CLASS data. These tiepoints are
not optimal for the RSS data, which results in the bias.
Biases are much smaller for the extents from the F16
and F18 SSMIS Tbs. Spatially, the differences in extent
are small, mostly scattered points along the coast and
the ice edge (figure 6). The F17 RSS case (figure 6(b))
shows the most noticeable difference in the Beaufort
Sea near Banks Island, where the ice edge is retracted
poleward by a few grid cells. This is due to the inap-
propriate tiepoints for the RSS Tb input.

The extent differences for the GR threshold chan-
ges are much smaller in magnitude than the Tb source
comparison (figure 7). The bias clearly changes with
GR threshold because the threshold allows more or
less ice (i.e. it shifts the effective minimum concentra-
tion threshold). There is greater sensitivity at lower GR
values than at the higher GR values. This makes sense
because the lower GR values correspond to a more
stringent filter that effectively raises the minimum
concentration that is allowed. As it raises that mini-
mum concentration above 15%, the total extent will
be directly affected. Raising the GR threshold will filter
less weather and will lower the minimum detectable
concentration, but there are usually relatively few
weather effects and if the threshold corresponds to a
concentration<15%, it will not affect the total extent.
This is seen in spatial maps of extent where the lower
threshold values very clearly cut off ice compared to
the baseline case, but higher thresholds have little
noticeable effect on the ice edge (figure 8). Antarctic
extents are more sensitive to GR, particularly during
the major ice growth period of September–December.
The higher sensitivity is partly due to the large peri-
meter of ice as it expands to encircle the entire con-
tinent; it also likely reflects a sensitivity to thin ice

Table 5. List of the three cases and the parameters that are varied for each. The parameters in bold are
common to all three cases and are used as the baseline for comparison.

Case Note Sensor Tb source Processed by GR threshold

Baseline NSIDCNRT F17 CLASS NSIDC 0.05

Goddard Goddard final F17 RSS Goddard 0.05

Tb Source F17 RSS NSIDC 0.05

F16 CLASS NSIDC 0.05

F18 CLASS NSIDC 0.05

Weatherfilter F17 CLASS NSIDC 0.046

F17 CLASS NSIDC 0.048

F17 CLASS NSIDC 0.052

F17 CLASS NSIDC 0.054
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growth at the edge as well as potentially strong atmo-
spheric effects over the SouthernOcean.

We note that the chosen range of GR threshold
adjustment (±0.02, ±0.04) is somewhat arbitrary.
Adjusting it more would obviously increase the magni-
tude of the extent differences. The rationale for our
selection is that the open water points generally cluster
within a 0.02 range of GR values (Steffen et al 1992) and
when the GR threshold has been adjusted to optimize
consistency between sensors, the adjustments have
been within ±0.04 (Cavalieri et al 2012, Meier and
Ivanoff 2017).

4.3. Estimating relative uncertainty
In the previous section, we estimated the sensitivity of
the extent to changes in parameters for three different
configurations.While the NRT versus Goddard differ-
ence is largest (both bias and standard deviation), this
uncertainty only applies when comparing NRT extent
valueswithGoddard values fromprevious years. Thus,
we consider this a separate uncertainty from the
‘internal’ uncertainty that affects any extent estimate.

The Tb source uncertainty is indicated by the varia-
tion (standard deviation) due to different sources: F17
RSS, F16 CLASS, and F18 CLASS. The differences are
due to the different Tb calibration (RSS versus CLASS) or
different orbit/sensor properties (different observation
times andCLASS calibrations for F16, F17, andF18).

In general, biases between sensors, even remaining
biases after intercalibration, do increase uncertainty
when comparing extents between different sensors. But
for uncertainty of extents from a given product/source

(same sensor, same algorithm), the biases between sen-
sors or processing are not relevant, so we use only the
standard deviation as the basis for uncertainty. In other
words, using the standard deviation of differences from
varying sources and algorithmparameters simulates the
uncertainty from a single source and set of algorithm
parameters.

In terms of estimating total uncertainty, the most
straightforward approach is to assume the uncertainties
from the Tb sources and the weather filters are indepen-
dent. In practice, the GR threshold will be affected by the
Tb source, but for simplicity we ignore this. To calculate a
total uncertainty, we first average the Tb uncertainties
(since all configurations are simply different ways of
estimating the sensitivity to Tb). Next, we average the
GR threshold uncertainty from the ±0.04 GR range.
Then we estimate the total uncertainty via a sum of
squares of the Tb source and GR average standard
deviations (equation (1)):

1

, , , .Total F RSS F F GR GR17 16 18
2

0.046 0.054
2s s s s s s= +

( )
( ) ( )

The total uncertainty is calculated as an overall
average for the entire three-year time period and for
the months of September and February (Antarctic) or
March (Arctic). These pairs ofmonths are of particular
interest because it is when the minimum and max-
imumextents normally occur (table 8).

A common standard for an uncertainty is the 2σ
range, the rightmost column in table 8. As noted
above, this an uncertainty for a constant sensor and

Figure 3.Total sea ice extent for the Arctic andAntarctic, 2015–2017, for the Tb source cases. The gaps in the lines represent periods of
missing/bad data inApril–May andmid-December 2016.
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constant processing method. For the NSIDC SII, these
uncertainties would be most valid for comparing
extents with the same processingmethod (Goddard or
NSIDC NRT) and the same sensor (F17). Currently,
the SII values from 2008–2017 are based on Goddard
values processed using F17.

Of particular interest to scientists and the general
public is the Septemberminimum extent in the Arctic.
One application of these uncertainties is to assess
these September minimums in light of the calculated
uncertainties. Table 9 shows the ten lowest minimum

extents (through 2017) with the rankings considering
the uncertainty range. Our assessment is that years
that have extents within 2σ of each other should be
considered to be tied.

As discussed above, these uncertainties assume a
consistent sensor and processing. So, they are most
valid for comparing extents from a single source.
Transitions between different sensors introduce fur-
ther uncertainty, which depends on the quality of the
intercalibration. Meier et al (2011) found that these
inconsistencies were in part due to limited overlap

Figure 4.Extent difference of Tb source cases with theNSIDCbaseline case.
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Figure 5.Map of extent comparison betweenGoddard andNSIDCNRT sources. Yellow indicates grid cells where onlyNSIDChas
ice, blue indicates grid cells where onlyGoddard has ice. Gray grid cells showno difference betweenGoddard andNSIDCwith shade
varying from light gray (100% ice), medium gray (0% ice), dark gray (land), to black (coastline). Circled in orange are regionswhere
NSIDC shows ice on 31August, but not 1 September due to changes in the oceanmask. The inset in (b) zooms in on a region in the
Beaufort Sea andCanadianArchipelago to showmore detail on the small differences.

Table 6.Meandifference (bias)with F17CLASS (GR=0.05) baseline extent. Units are 106 km2.

Period Goddard F17RSS F16 F18 GR0.046 GR0.048 GR0.052 GR0.054

Arctic

All 0.018 −0.123 0.013 −0.021 −0.025 −0.010 0.007 0.011

March 0.001 −0.122 −0.013 −0.007 −0.023 −0.010 0.007 0.012

September 0.041 −0.164 −0.005 −0.019 −0.021 −0.008 0.006 0.009

Antarctic

All 0.007 −0.175 −0.007 −0.051 −0.030 −0.011 0.006 0.010

February −0.009 −0.126 −0.002 −0.031 −0.020 −0.007 0.005 0.008

September 0.012 −0.182 −0.005 −0.059 −0.039 −0.014 0.007 0.011

Table 7.Difference standard deviationwith F17CLASS (GR=0.05) baseline extent. Units are 106 km2. Values in bold are used
in the estimate of relative uncertainty in section 4.3.

Period Goddard F17RSS F16 F18 GR0.046 GR0.048 GR0.052 GR0.054

Arctic

All 0.043 0.029 0.032 0.025 0.010 0.004 0.003 0.005

March 0.015 0.011 0.022 0.015 0.006 0.003 0.004 0.007

September 0.024 0.027 0.017 0.011 0.006 0.003 0.002 0.004

Antarctic

All 0.024 0.054 0.019 0.030 0.019 0.007 0.004 0.007

February 0.012 0.010 0.018 0.023 0.005 0.002 0.002 0.004

September 0.014 0.033 0.030 0.020 0.010 0.004 0.002 0.004
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periods. In a later study, Eisenman et al (2014) noted
inconsistencies in the time series attributable to inter-
calibration, particularly in the early part of the record.
Unlike early transitions, the F13 SSMI to F17 SSMIS
intercalibration had a full year of overlap to derive
adjustments. This led to a high-quality intercalibra-
tion and only very small errors (Meier et al 2011,
Cavalieri et al 2012). Another concern is ‘sensor drift’.
Over time, the orbits of satellites will change due to
atmospheric drag. This will change observation times
and altitude. These could change the performance
within a sensor over time. Fortunately, F13 and F17
had only minimal orbital drift, so this error should be
small. Thus, there should be good confidence in the
above-derived uncertainty estimates since the begin-
ning of the F13 SSMI in 1995.

5.Discussion and conclusion

Since at least 2007, interest in Arctic sea ice extent,
particularly the maximum and minimum seasonal
extremes, has been growing. The record low extents in
2007 and 2012 brought considerable attention to the
long-term sea ice decline. More recently, record low
and record high extents in the Antarctic have turned
attention to the southern hemisphere sea ice as well.
The changing ice is impacting stakeholders, from
native communities to commercial interest. In
response, two efforts have evolved. The NSIDC Arctic
Sea Ice News and Analysis (https://nsidc.org/
arcticseaicenews/), funded by NASA, provides daily
updates of extent based on the NSIDC SII and regular
real-time analyses of conditions through the year. The
Sea Ice Outlook (https://arcus.org/sipn/sea-ice-
outlook), coordinated by the Arctic Research
Consortium of the United States and funded by

multi-agency international partners, solicits contribu-
tions from the community to make predictions of the
Arctic September (andmore recently Antarctic Febru-
ary) extent. The prediction methods vary from geo-
physical models, statistical methods, and heuristic
approaches.Many are initialized by passivemicrowave
sea ice extent/concentration fields. The predictions
are evaluated relative to theNSIDC SII extents.

While the SII values are widely used in the science
community, they do not represent better or more
accurate estimates compared to other products.
The goal of this paper is to put the SII extents in amore
general context. We have provided an estimate of an
absolute uncertainty range of extents, based on the
output from several different products. These suggest
a range of 500 000 to 1×106 km2 in extent from the
different products. This range can be explained by bia-
ses in ice edge position of 25–75 km due to differences
in sensitivity of the algorithms to conditions near the
ice edge (e.g. thin ice) and sensor spatial resolution.

Relative uncertainty was assessed through an ana-
lysis of variations in the SII processing, adjusting the
input Tb source and algorithm parameters (GR
weather filter threshold). The relative uncertainties are
30 000–70 000 km2 depending on the time of year and
hemisphere for a given sensor. For the Arctic Septem-
ber minimum extent, the uncertainty was found to be
38 000 km2. Slightly higher ranges are expected for
comparisons between different sensor sources, though
the stability of the time series appears to be good since
the start of the F13 record in 1995. There is a larger
uncertainty between NRT and final processing by
Goddard. Thus, NRT extent estimates should be con-
sidered with more caution when comparing to earlier
estimates based onGoddard concentration fields.

Ideally, a fully independent, high-quality, con-
sistent, hemisphere-wide validation product would be

Figure 6.Comparisonmaps of extent for (a) F16, (b) F17RSS, and (c) F18. Yellow indicates cells where ice occurs only in the baseline
cases. Blue indicates cells where ice occurs only in the comparison case.
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used as a true estimate of extent to compare the passive
microwave derived extents. However, such a product
does not exist. Operational ice charts are high quality,
but because their input data quality and quantity vary
and because they use manual analysis the fields are not
consistent over time. The approach used here to esti-
mate uncertainty is intrinsic to the data sources them-
selves and may not encompass the full range of
uncertainty.

This analysis is focused on hemisphere-wide
extent uncertainty. Regional conditions are often
important to specific stakeholders. Regional extent

uncertainties may be larger because there could be off-
setting (high and low) biases in different regions that
tend to cancel each other in the hemisphere-wide
values.We plan to investigate regional uncertainties in
a follow-on study.

The passive microwave sea ice record is one of the
longest satellite-derived climate records and one of the
most iconic indicators of climate change. However,
this long-term record is threatened. The existing pas-
sivemicrowave sensors used by the community for sea
ice extent are aging. As of this paper (December 2018),
the newest sensor, AMSR2, is over six years old,

Figure 7.Extent difference with the baseline case for different GR threshold values for (a)Arctic and (b)Antarctic.
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already past its nominal 5-year mission. The current
DMSP SSMIS sensors have been operating at least eight
years, and the oldest (on F16) was launched more than
14 years ago. The US Department of Defense, JAXA,
and the European Space Agency have plans to launch
new passive microwave sensors, but these are in their
incipient stages and the earliest launch is likely to be at
least five years in the future. China has a passive micro-
wave sensor on its FY-3C satellite and future launches
are planned. However, there is still a growing potential
for a gap in the passive microwave record. If such a gap
occurs, intercalibration between sensors would not be
possible and the quality of the long-term sea ice extent
climate indicator would be degraded. This would be a
significant loss to the climatemonitoring community.

Figure 8.Comparisonmaps of extent forGR thresholds of (a) 0.046, (b) 0.048, (c) 0.052, and (d) 0.054. Yellow indicates cells where ice
occurs only in the baseline cases. Blue indicates cells where ice occurs only in the comparison case.

Table 8.Average of standard deviations for the Tb source cases (F17
RSS, F16, F18), theGR cases (±0.04), and the total based on
equation (1). Values inbold text represent thefinal relative
uncertainty estimates. Units are 106 km2. Values are rounded to the
nearest 0.001 (1000 km2).

Period Tb source GR

Total

st. dev.

Uncertainty

range

Arctic

All 0.029 0.008 0.030 0.060

March 0.016 0.007 0.017 0.034

September 0.018 0.005 0.019 0.038

Antarctic

All 0.034 0.013 0.036 0.072

February 0.017 0.005 0.018 0.036

September 0.027 0.006 0.028 0.056
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